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ABSTRACT

In a previous study, idealized model simulations of supercell thunderstorms were used to demonstrate
support of the hypothesis that wide, intense tornadoes should form more readily out of wide, rotating updrafts.
Observational data were used herein to test the generality of this hypothesis, especially to tornado-bearing
convective morphologies such as quasi-linear convective systems (QLCSs), and within environments such as
those found in the southeastern United States during boreal spring and autumn. A new radar dataset was
assembled that focuses explicitly on the pretornadic characteristics of the mesocyclone, such as width and
differential velocity: the pretornadic focus allows us to eliminate the effects of the tornado itself on the
mesocyclone characteristics. GR2Analyst was used to manually analyze 102 tornadic events during the period
27 April 2011-1 May 2019. The corresponding tornadoes had damage (EF) ratings ranging from EFO0 to EF5,
and all were within 100km of a WSR-88D. A key finding is that the linear regression between the mean,
pretornadic mesocyclone width and the EF rating of the corresponding tornado yields a coefficient of de-
termination (R?) value of 0.75. This linear relationship is higher for discrete (supercell) cases (R* = 0.82), and
lower for QLCS cases (R* = 0.37). Overall, we have found that pretornadic mesocyclone width tends to be a
persistent, relatively time-invariant characteristic that is a good predictor of potential tornado intensity.
In contrast, the pretornadic mesocyclone intensity (differential velocity) tends to exhibit considerable time
variability, and thus would offer less reliability in anticipating tornado intensity.

1. Introduction strength). Updraft area itself was found to correlate
most strongly with the low-level environmental vertical
wind shear (see also Kirkpatrick et al. 2009; Trapp
et al. 2018).

This hypothesis—and indeed the current study—is
unconcerned with the specific details of the processes
leading to tornadogenesis, for example, whether (and
how) near-ground vertical rotation originates from a
forward-flank region and/or rear-flank region, etc.
(e.g., see Markowski and Richardson 2009; Trapp
2013; Davies-Jones 2015). However, as already noted,
the T17 hypothesis does require that the tornado de-
velop from a contraction of ““parent’’ vertical vorticity,
which is present over some surface-based depth. This
parent vertical vorticity, which out of convenience is
referred to as a mesocyclone, is necessarily repre-
sented herein as a Doppler velocity couplet in Doppler

Analyses of tornado occurrence show that strong to
violent tornadoes cause a disproportionate amount of
damage and fatalities (Ashley 2007). This is mainly due
to the tendency for strong to violent tornadoes to have
the widest and longest damage paths (Brooks 2004).

In an attempt to explain this relationship, Trapp et al.
(2017, hereafter T17) posed the simple hypothesis that
wide, intense tornadoes should form more readily from
a contraction of wide mesocyclones or, equivalently,
wide rotating updrafts. Support for this hypothesis
was found in a set of idealized numerical simulations
of supercell thunderstorms, which revealed robust
linear correlations between updraft area and peak near-
surface vertical vorticity (a proxy for tornado-like vortex
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radar data (see section 2). Implicitly, the conceptual
model underlying T17—and therefore also the present
study—is that of a supercell, although as we will show,
the tornado-generating storm need not be a supercell
for T17’s hypothesis to hold. Specifically, quasi-linear
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convective systems (QLCSs) are known to develop
tornadoes from a contraction of a parent (meso) vor-
tex (e.g., Trapp et al. 1999; Atkins et al. 2004) that can
originate from supercell-like processes, such as the
tilting of baroclinically generated horizontal vorticity
(e.g., Trapp and Weisman 2003; Wheatley and Trapp
2008; Parker et al. 2019). QLCSs have also been shown
(e.g., most recently by Conrad and Knupp 2019; see
also Carbone 1983; Wheatley and Trapp 2008) to
generate tornadoes through processes involving the
release of a horizontal shearing instability (HSI). Even
in these HSI-type cases, there is still a parent (miso)
vortex that is contracted into the tornado (e.g., see Lee
and Wilhelmson 1997). Thus, as in supercells, the
pretornadic characteristics of these parent vortices
should also exert a strong control on the eventual
tornado intensity.

To help illustrate this, we recall that the physical basis
for the T17 hypothesis is conservation of angular mo-
mentum, or equivalently, Kelvin’s circulation theorem,
which can be represented by

2muyr, =T =2mu,,r,, (1)
where r7and uz (ryand uy,) are, respectively, the radius
and tangential wind speed of the tornado (pretornadic
mesocyclone), and T’ is circulation. T17 used the meso-
cyclone dataset of Trapp et al. (2005a) in Eq. (1) to
demonstrate that a contraction of a large-r,,, weak-u,
mesocyclone more likely explains the existence of a
large-rr, strong-urtornado than does a small-r,,, strong-
uy, mesocyclone. This is due to the fact that as ry, is
reduced, the necessarily stronger u,, [through Eq. (1)]
becomes implausibly high for pretornadic mesocyclonic
rotational velocities, and even approaches the ur of
strong tornadoes.

One of the limitations of the Trapp et al. (2005a)
dataset, and indeed of the larger and more compre-
hensive datasets of Smith et al. (2015) and Thompson
et al. (2017), is that the diagnosed characteristics such as
rotational velocity, differential velocity, and radius are
of the mesocyclone while the tornado was in progress. In
other words, the tornado characteristics are aliased onto
those of the mesocyclone, implying that descriptions
such as “clear and tight” (Thompson et al. 2017) refer at
least in part to the tornado. This inclusion of the tornado
was intentional in the studies of Smith et al. (2015) and
Thompson et al. (2017), as well as in the more founda-
tional study of Toth et al. (2013), who all sought to use
tornadic-mesocyclone characteristics to help diagnose
tornado intensity or damage rating. The objective of our
study, on the other hand, is to use pretornadic mesocy-
clone characteristics to predict tornado intensity or
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damage rating, conditional on tornadogenesis. A dataset
that can be used toward this end does not, to our
knowledge, exist in the published literature beyond that
of Davis and Parker (2014), who compiled a pretornadic
mesocyclone dataset but did not expand their case se-
lection outside of high shear, low convective available
potential energy (CAPE) (HSLC) environments, and
also did not reference an EF scale.

In section 2, the creation of a diverse mesocyclone
dataset is described, as is the method employed to ana-
lyze the mesocyclone characteristics. The results of the
analyses are presented in section 3, which show that
observed intense tornadoes tend to form more readily
out of wide mesocyclones within different convective
modes and environments. A discussion of how these
results might be applied in an operational setting is
provided in section 4, followed by a summary and con-
clusions in section 5.

2. Methodology

Archived, single-site, WSR-88D Level II data of
102 tornadic events (Table 1) during the period from
27 April 2011 to 1 May 2019 were manually analyzed
using the Gibson Ridge radar software (GR2Analyst).
The events were selected to provide: seasonal and geo-
graphical diversity; a reasonable sample of parent-storm
morphologies; a range of EF ratings, from EF0 to EF5
(20 EFO0, 27 EF1, 24 EF2, 21 EF3, 6 EF4, 4 EFS); and
variations in environmental conditions, including those
characterized as HSLC as well as high shear, high CAPE
(HSHC). Because of the desire to have access to po-
larimetric radar data to help confirm tornado presence
(see below), the events were required to have occurred
during approximately the past six years, excluding the
EFS5 cases. They were also required to have radar ranges
less than 100km throughout their lifetime in order to
lessen the impact of radar range and beamwidth limi-
tations (Wood and Brown 1997). In addition, no more
than three events were selected from the same synoptic-
scale system, and each tornado analyzed had to be the
first produced by a storm: The former criterion was
imposed as a compromise between the desire to maxi-
mize the number of events yet minimize similar and
thus potentially dependent data; the later criterion was
imposed to avoid potential confusion about how to
classify a mesocyclone as “pretornadic’” when in the
presence of ongoing/dissipated tornadoes. Finally, any
events with improperly dealiased Doppler velocities
were excluded.

The parent-storm convective mode was characterized
simply as discrete supercells (DSC), quasi-linear con-
vective systems (QLCSs), or multicells (MUL) using
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radar reflectivity data from the volume scan immedi-
ately prior to reported tornadogenesis. Following Trapp
et al. (2005b) and Smith et al. (2012), a discrete storm
was a relatively isolated entity with a single, high-
reflectivity core (reflectivity = 50 dBZ). A QLCS had
contiguous reflectivity of at least 35 dBZ over a hori-
zontal distance of at least 50 km, and a length-to-width
aspect ratio of at least 3:1. If the parent storm did
not meet the criteria of these two categories, it was
typically a multicell storm or short line segment com-
prised of a more complex reflectivity structure including
multiple reflectivity maxima in close proximity and thus
was placed in the MUL category.

The primary analysis was of the pretornadic mesocy-
clone width, which was defined as the linear distance
between velocity peaks in the vortex couplet. The lati-
tude and longitude of the center of the gates of maxi-
mum velocity were used to calculate the linear distance.
The presence of a mesocyclone itself was confirmed
using a methodology similar to Smith et al. (2012).
Specifically, we required a peak differential velocity
(AV) = 10ms ™! over a horizontal distance of less than
7km, over the depth of the three lowest radar elevation
angles, during at least one volume scan. Each of the
cases in this dataset was required to have met this
threshold, regardless of their convective mode. The
mesocyclone width, inbound and outbound velocity
peaks, and AV were evaluated at the three lowest radar
elevation angles, for up to four! volume scans (see
Table 1) during the lifetime of the identifiable mesocyclone
through the volume scan just prior to the time of reported
tornadogenesis. The time of tornadogenesis was confirmed
by a consideration and comparison of the NOAA Storm
Events Database (NOAA/NCEI/NESDIS 2014) descrip-
tion of each tornado and the manual radar analysis
(including evaluation of the possible presence of a
tornado debris signature). The three elevation angles
were 0.5° 0.9°, and 1.3°, £0.1° depending upon the
specific radar site. Reflectivity and Doppler velocity
images at each of the three elevation angles are
shown for a high EF and a low EF DSC case at the
time of the peak, mean (over the lowest three eleva-
tion angles), pretornadic width of the mesocyclone
(Figs. 1 and 2 ). The apparent relationship shown in
Figs. 1 and 2 between mesocyclone width and tornado
EF scale was quantified for all cases using linear
regression.

! Although some mesocyclones in our dataset had pretornadic
lifetimes exceeding four volume scans (see Table 1), analysis of
their characteristics beyond four volume scans did not provide
unique information.
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To further explore the relationship between tornado
EF rating and mesocyclone width, and to build on pre-
vious efforts of using radar data to estimate tornado
intensity (Toth et al. 2013; Kingfield and LaDue 2015;
Thompson et al. 2017), an analysis of each tornadic
circulation from the time of tornadogenesis through
the time of dissipation was also completed. The first
analysis time for each tornado was the first volume scan
of the time of or after the time of tornadogenesis. Thus,
the tornado was required to have a duration of at least
one volume scan after tornadogenesis for the case to be
included; because EFO0 tornadoes tend to be particularly
short lived, many EFO cases initially considered for in-
clusion did not meet this criterion. The peak inbound
and outbound velocities and the AV of the tornadic
vortex were manually evaluated at the three lowest ra-
dar elevation angles of each volume scan throughout the
life of the tornado. This analysis was used to determine if
there was a relationship between the peak tornadic
vortex strength (AV), EF rating, and peak pretornadic
mesocyclone width of each storm.

3. Results

When all 102 cases were analyzed, higher EF-rated
tornadoes tended to be associated with larger pre-
tornadic mesocyclones (Fig. 3a), as quantified by a
coefficient of determination (R?) of 0.75 in the linear
regression between these two variables. This linear
relationship is based on the use of total average me-
socyclone width, defined as the mean mesocyclone
width over the lowest three elevation angles and all
volume scans analyzed during the pretornadic period.
When the maximum estimated tornadic wind speed
from damage assessments, collected from the NWS
Damage Assessment Toolkit, is used in place of EF
rating (see also Cohen et al. 2018), the strong linear
relationship between higher damage rated tornadoes
and the total average mesocyclone width remains
(R* = 0.77; Fig. S1 in the online supplemental mate-
rial). The linear relationship is slightly stronger when
only the cases meeting the DSC mode classification
(49 cases) were analyzed (Fig. 3b, R* = 0.82), and
weaker when only the cases meeting the QLCS mode
classification (39 cases) and MUL mode classification
(14 cases) were analyzed (Fig. 3c, R> = 0.37 and
Fig. 3d, R* = 0.38). This may be due to the fact that the
QLCS (and MUL) cases had relatively shorter-lived
and weaker pretornadic mesocyclones and tornadoes
(see Table 1).

The regression analyses are supported by box-and-
whisker plots, which show a distinct separation be-
tween the pretornadic mesocyclone widths for relatively
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FIG. 1. (a)-(c) Radar reflectivity factor (dBZ) and (d)-(f) storm relative Doppler velocity
(ms™') at the 0.5°,0.9°, and 1.3° elevation angles, for the pretornadic supercell associated with
the Marshall, Mississippi, EF4 tornado at 2207 UTC 23 Dec 2015. The distance from the radar
was approximately 70 km and the 0.5° beam height was approximately 1121 m. This is the time

of the peak total average mesocyclone width.
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FI1G. 2. As in Fig. 1, but for the pretornadic supercell associated with the Blount, Alabama, EF1 tornado at
0042 UTC 20 Mar 2018. The distance from the radar was approximately 82 km and the 0.5° beam height was
approximately 1042 m.
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FIG. 3. Scatterplot showing the linear relationship between the
total average pretornadic mesocyclone width (km) and the EF
rating of the resultant tornado for (a) all cases, (b) discrete su-
percell (DSC) cases, (c) quasi-linear convective system (QLCS)
cases, and (d) multicell (MUL) cases.
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weaker (EF0-EF2) and stronger (EF3-EFS5) tornadoes
for all cases (Fig. 4a) and DSC cases (Fig. 4b). For QLCS
and MUL cases, the more substantial overlap in pre-
tornadic mesocyclone widths for EFO-EF2 tornadoes is
consistent with the weaker relationship seen in the re-
gression analysis (Figs. 4c,d); although there are only
two QLCS EF3 tornadoes in this dataset, pretornadic
mesocyclone widths for EF3 tornadoes are also sepa-
rated from those associated with the EFO-EF2 cases that
had narrower widths less than 3km (Fig. 4c).

A comparison of the time-averaged and peak pre-
tornadic mesocyclone width at each of the three lowest
radar elevation angles further supports the relationship
between wide mesocyclones and strong tornadoes. (The
peak pretornadic mesocyclone width is the maximum
over all of the analysis times during the lifetime of the
pretornadic mesocyclone.) For all cases, there is a sim-
ilar relationship between the EF rating and both the
average and maximum pretornadic mesocyclone width
across all elevation angles (Fig. 5a and Fig. 6a). A
stronger relationship is shown for all elevation angles for
both the average and maximum pretornadic mesocy-
clone width for DSC cases (Figs. 5Sb and 6b). For QLCS
(and MUL) cases the relationship is weaker for all ele-
vation angles, particularly the highest of the three
(Figs. 5c,d and 6c,d). This may be due to the shallow,
more diffuse, and shorter-lived nature of QLCS meso-
cyclones (e.g., Trapp et al. 1999; Atkins et al. 2004).
Indeed, in this dataset, the average lifetime of the pre-
tornadic mesocyclone was 19min for DSC cases and
10 min for QLCS cases.

Thus far, EF rating has been used to explore the re-
lationship between the pretornadic mesocyclone width
and tornado intensity, but in light of the potential biases
in damage-based ratings, the peak tornadic AV was also
analyzed here to provide an independent measure of
tornado intensity. Figure 7 shows that the linear rela-
tionship between the total average mesocyclone width
and the peak tornadic AV (R* = 0.59) is comparable to
that between total average mesocyclone width and EF
rating, which provides further confidence in this general
relationship. (The peak tornadic AV is the maximum
over all the analysis times during the lifetime of the
tornado.) As an aside, the strong linear relationship
(R* = 0.63) between EF rating and peak tornado AV
across all cases (Fig. 8) helps explain the relative
agreement between the analyses in Figs. 3 and 7, and
also supports efforts introduced by Toth et al. (2013),
Kingfield and LaDue (2015), and Thompson et al. (2017)
to use operational weather radar to estimate tornado
intensity. This relative agreement between EF rating
and the peak tornadic AV across all cases can also be
viewed through a box-and-whisker plot (Fig. S2). When
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FIG. 4. Box-and-whisker plot showing the relationship between the
total average pretornadic mesocyclone width (km) EF rating of the
resultant tornado for (a) all cases, (b) DSC cases, (c) QLCS cases, and
(d) MUL cases. The number of cases is listed above each top whisker.
The mean is represented by the X and the median by the bar. The top
and bottom of the box represent the third and first quartiles with
exclusive medians, respectively, and the top and bottom whiskers
represent the minimum and maximum values, respectively.
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FIG. 5. Scatterplot showing the linear relationship between the
total average pretornadic mesocyclone width (km) at each elevation
angle (0.5°,0.9° and 1.3°) and the EF rating of the resultant tornado
for (a) all cases, (b) DSC cases, (c) QLCS cases, and (d) MUL cases.
The R? and p values are listed from lowest to highest tilt.
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FIG. 6. As in Fig. 5, but showing the linear relationship between
the maximum pretornadic mesocyclone width (km) at each ele-
vation angle and the EF rating of the resultant tornado. The R? and
p values are listed from lowest to highest tilt.
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FIG. 7. Scatterplot showing the linear relationship between the
peak intensity of the tornadic vortex (differential velocity; ms™')
and the total average pretornadic mesocyclone width (km) for
all cases.

the maximum estimated tornadic wind speed from
damage assessments is used in place of EF rating, the
strong linear relationship between higher damage rated
tornadoes and the peak tornadic AV remains (R* = 0.64,
Fig. S3). The substantial overlap of tornadic AVs in
Fig. 8 across EFO-EF2 tornadoes may partially be due to
the biases and inaccuracies of EF ratings for weaker
tornadoes, including a lack of damage indicators.

It is possible that the AV as well as the mesocyclone-
width analyses are sensitive to the radar range, specifically
to the beam broadening with increasing range, the
change of positioning of the vortex center relative to the
radar beam center, and the increase in relative beam
heights with range, which in turn affects the height of the
vortex sampled (e.g., Wood and Brown 1997). In terms
of the latter range dependency, we note for example,
that for a storm 15 km from the radar, the beam height at
1.3° elevation angle is approximately 400m AGL, and
the change in height between the three lowest tilts
considered here is about 100 m. For a storm about 80 km
from the radar, the beam height at 1.3° elevation angle
is approximately 2400m AGL, and the change in
height between the three lowest tilts is roughly 600 m.
To explore the effect of range on our results, we first
performed a linear regression between the total aver-
age pretornadic mesocyclone width and radar range at
the time of tornadogenesis (not shown), and found
only a very weak relationship (R*> = 0.14). We also
performed a linear regression between the total aver-
age pretornadic mesocyclone width and the 0.5° beam
height (not shown), and likewise found only a very
weak relationship (R* = 0.16). Both analyses suggest a
limited negative impact of radar range on the key re-
sults of the study. Next, we subdivided the cases by
range into three groups: 0-35-km range (31 cases),
36-70-km range (43 cases), and 71-100-km range
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(28 cases). We found no reduction in the linear rela-
tionship between EF rating and peak tornado AV
across these three range groupings (not shown). In
terms of pretornadic mesocyclone width versus EF
rating, when the total average pretornadic mesocy-
clone width is used, we found that the first two groups
have slightly weaker linear relationships relative to
that of the third group (R* = 0.72, R* = 0.71, R* = 0.79,
respectively; Fig. 9). This comparatively stronger re-
lationship at farther radar ranges is also found across
the three lowest elevation angles when the peak pre-
tornadic mesocyclone width is compared to the total
average pretornadic mesocyclone width (Fig. 10),
perhaps suggesting the relative importance of pre-
tornadic mesocyclone width in the midlevels of the
storm (see T17). Because the average pretornadic
mesocyclone width at each elevation compares well to
the total average pretornadic mesocyclone width, but
with stronger relationships at farther ranges (Fig. 11),
it appears that the pretornadic mesocyclone width
does not vary across a large depth of the storm
throughout its life cycle. Thus, if a pretornadic me-
socyclone is wide in its lowest levels, it should also be
wide at higher levels, as was argued on physical
grounds by T17.

An open question at this point is whether the time
variability of mesocyclone width during the pretornadic
period is sufficiently low so as to provide a reliable
indicator of tornado intensity, as hypothesized. This
question was addressed in part by comparing the maxi-
mum pretornadic mesocyclone width at each of the
three elevation angles to the total average mesocyclone
width. As shown by Fig. 12, the linear relationship be-
tween these two variables is strong across all cases and
each elevation angle. The standard deviation of the
mesocyclone width was also analyzed and compared to
the total average mesocyclone width for all of the cases
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FI1G. 9. Scatterplot showing the linear relationship between the
average pretornadic mesocyclone width (km) and the EF rating of
the resultant tornado for all cases with a radar range of (a) 0-35,
(b) 36-70, and (c) 71-100 km.

individually. Although some of the cases exhibit stan-
dard deviations that are more than 50% of the mean, the
linear relationship between these two variables is weak
across all cases (R? = 0.20) (Fig. 13). In other words,
the time variability of a pretornadic wide mesocy-
clone is comparable to that of a narrow mesocyclone.
Both of these analyses are interpreted to mean that a
mesocyclone that is wide (narrow) at some point
during its pretornadic period generally remains a
wide (narrow) mesocyclone.

The pretornadic mesocyclones did undergo some
contraction just prior to tornadogenesis, however. There
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FIG. 10. Scatterplot showing the linear relationship between the
peak pretornadic mesocyclone width at each elevation angle and
the total average pretornadic mesocyclone width (km) for cases
with a radar range of (a) 0-35, (b) 3670, and (c) 71-100 km. The R?
and p values are listed from lowest to highest tilt.

were 53 out of 102 cases that experienced a decrease
in the total average pretornadic mesocyclone width
of at least 5% during the two volume scans prior to
tornadogenesis; at the lowest elevation angle, 60 out
of the 102 cases experienced this decrease in the total
average pretornadic mesocyclone width. A change in
the pretornadic mesocyclone AV was also noted:
67 out of 102 cases experienced an increase in the av-
erage mesocyclone AV of at least Sms™ ' during the
two volume scans prior to tornadogenesis. Specifically,
the majority of tornadoes rated EF3 and greater were
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F1G. 11. As in Fig. 10, but showing the linear relationship be-
tween the average pretornadic mesocyclone width at each ele-
vation angle and the total average pretornadic mesocyclone
width (km). The R? and p values are listed from lowest to high-
est tilt.

associated with mesocyclones that narrowed and strength-
ened just prior to tornadogenesis. This supports the
idea that a pretornadic mesocyclone that shows an in-
crease in AV and a decrease in width immediately prior
to tornadogenesis may be more likely to produce a
tornado, specifically a potentially strong tornado.
Previous work describing fundamental tornado and
supercell dynamics (e.g., Davies-Jones 2015) supports
convergence and narrowing of the pretornadic circula-
tion, and an increase in the differential velocity of the
pretornadic mesocyclone, and a narrowing and intensifying

Unauthenticated | Downloaded 01/30/24 02:47 PM

uTC



1256

® PeakTilt0.5" ® PeakTit09* Peak Tilt1.3*

Linear (Peak Tilt 0.5%) Linear (Peak Tilt 0.9°) Linear (Peak Tilt 1.3)

o

s
£y
X
5
e @ L]
=
o

£s = ., 209 ®R?=0.8469
g a4 ,‘o .: ‘ L[] R?=0.8621
g ) R?=0.8289
o oy C] L]
L3 8’,’ 2 .
= Aol 8es ©
= - i/

2 2 4 .
=] o o) g p=151E-42
=1 now L 2 p=8.03E-45
= . p=4.05E-40
50
F oo 1 2 3 4 5 6 7 8 9 10

TOTAL AVERAGE MESOCYCLONE WIDTH (KM)

FI1G. 12. Scatterplot showing the linear relationship between the
peak pretornadic mesocyclone width at each elevation angle and
the total average pretornadic mesocyclone width (km) at each el-
evation angle for all cases. The R* and p values are listed from
lowest to highest tilt.

of the pretornadic mesocyclone particularly for dis-
crete, EF2+ tornado producing storms has been ob-
served in other observational studies (Gibbs and
Bowers 2019).

As just alluded to, the intensity of the pretornadic
mesocyclone would appear to be another characteristic
that, like width (or in addition to width), could be
exploited to help anticipate tornado intensity. However,
Fig. 14a reveals that the linear relationship between
the peak pretornadic mesocyclone AV, defined as the
maximum AV over all analysis times and tilts during the
lifetime of the pretornadic mesocyclone, and EF rating
for all cases is relatively weak (R* = 0.42). When the
maximum estimated tornadic wind speed from damage
assessments is used in place of EF rating, the weaker
relationship between higher damage rated tornadoes
and the peak pretornadic mesocyclone AV remains but
is slightly higher (R* = 0.45, Fig. S4). When this rela-
tionship is explored through a box-and-whisker plot, an
increase in peak pretornadic mesocyclone AV with in-
creasing EF rating is apparent, but so also is the sub-
stantial overlap across each EF rating, particularly with
weaker EF-rated tornadoes (Fig. 14d). If the peak
pretornadic mesocyclone AV at each tilt is averaged
and compared to EF rating, the linear relationship re-
mains weak (R?> = 0.39) (Fig. 14b). Finally, if the
maximum pretornadic mesocyclone AV at each eleva-
tion angle is compared to EF rating, the linear rela-
tionship improves somewhat, especially at elevation
angle 3 (R* = 0.40) (Fig. 14c), but still is comparatively
weak. Although the EF4-5 cases tended to be associ-
ated with the strongest pretornadic mesocyclones,
the conclusion from this analysis is that relatively higher
EF-rated tornadoes do not necessarily tend to be asso-
ciated with more intense pretornadic mesocyclones; this
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FIG. 13. Scatterplot showing the linear relationship between the
standard deviation of the pretornadic mesocyclone width (km) and
the average pretornadic mesocyclone width (km) for all cases.

basic conclusion applies across all convective modes
(not shown).

This analysis of pretornadic mesocyclone AV can
also be extended to provide a comparison between
mesocyclone width and intensity. Figure 15 reveals that
the overall peak pretornadic mesocyclone AV had a
weak linear relationship with total average pretornadic
mesocyclone width (R* = 0.37); if the peak pretornadic
mesocyclone AV at each of the three elevation angles
is averaged and compared with the total average
pretornadic mesocyclone width, there is a similarly weak
relationship (R? = 0.36) (Fig. 16). The conclusion here is
that the widest pretornadic mesocyclones are not
necessarily the strongest pretornadic mesocyclones,
and vice versa. This result is consistent with the con-
servation of circulation argument in T17, which shows
how a given circulation can result from different
plausible mesocyclonic widths and rotational veloci-
ties, such as a wider mesocyclone with a weaker ro-
tational velocity or a narrower mesocyclone with a
stronger rotational velocity.

The results of Brooks (2004) and T17 imply that the
tornado damage width should also relate to the pre-
tornadic mesocyclone width. Analysis of the damage
path information provided in the NOAA Storm
Database shows that the smallest pretornadic mesocy-
clone widths of around 1km tended to be associated
with the smallest tornado damage widths. At the other
extreme, the largest pretornadic mesocyclone widths of
around 5 km tended to be associated with larger tornado
damage widths. However, over all cases, the relationship
between the tornado damage width and the total aver-
age pretornadic mesocyclone width is weak (Fig. 17a,
R?> = 0.36). This is reflected the least in DSC cases
(Fig. 17b, R* = 0.43), but particularly in MUL cases
(Fig. 17c, R* = 0.0004), as well as QLCS cases (Fig. 17d,
R? = 0.25). To test whether a large range of widths for
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FI1G. 15. Scatterplot showing the linear relationship between the
peak pretornadic mesocyclone intensity (differential velocity;
ms ') and the average pretornadic mesocyclone width (km) for
all cases.

weaker tornadoes was impacting these results, EF0 and
EF1 tornadoes were removed. This test was motivated
by the weaker and narrower nature of QLCS tornadoes
and the tendency of their damage to be aliased into
straight line wind damage (Trapp et al. 2005b; Skow and
Cogil 2017). There was little to no impact on the rela-
tionship between tornado damage width and total av-
erage mesocyclone width, though. Based on this
analysis, the pretornadic mesocyclone width does not
appear to accurately anticipate tornado damage width,
implying that the presence of a wide pretornadic me-
socyclone does not mean that, if a tornado forms, it will
be wide. The overall poor relationship between tornado
damage width and total average mesocyclone width,
especially with QLCS events, may be partially due to the
insufficiency of damage indicators or lack of dam-
age indicators (e.g., Edwards et al. 2013; Snyder and
Bluestein 2014).

The relationship between tornado pathlength and
the total average pretornadic mesocyclone width was
also weak (Fig. 18a, R*> = 0.32) across all cases.
Although the longest-track tornadoes from DSC events
were associated with wider pretornadic mesocyclones,
overall a weak relationship was found for each of the
convective mode categories (Figs. 18b-d), with a
large spread of tornado pathlengths associated with
both relatively wide and narrow mesocyclones, es-
pecially for QLCS events. Thus, the presence of a wide
or narrow pretornadic mesocyclone does not appear to

«—

p values are listed from lowest to highest tilt. (d) A box-and-
whisker plot as in Fig. 4, but now showing the relationship between
the peak pretornadic mesocyclone intensity (differential veloc-
ity; ms ') and the EF rating of the resultant tornado.
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FIG. 16. Scatterplot showing the linear relationship between the
peak average intensity of the pretornadic mesocyclone (differential
velocity; ms™') and the total average width of the pretornadic
mesocyclone (km) for all cases.

accurately anticipate the likelihood of a long- or short-
track tornado.

Finally, because our study was motivated in part
by the desire to better anticipate tornado intensity
within the southeastern United States, the previous
analyses were repeated for only those cases located
within the states of South Carolina, Georgia, Florida,
Alabama, Mississippi, Louisiana, Arkansas, and
Tennessee. Over this subdomain, the linear relationship
between the total average pretornadic mesocyclone
width and EF rating is slightly reduced (R*> = 0.70)
relative to that over all cases (R* = 0.75) yet still
strong. The relationships for DSC cases were slightly
higher (R* = 0.85) and the relationships for QLCS
cases were slightly weaker (R* = 0.31) compared
to those over all cases (R> = 0.82 and R* = 0.37,
respectively). This result suggests that the observa-
tional realization of the T17 hypothesis is not geo-
graphically constrained.

4. Operational application

The preceding analyses of radar characteristics of
pretornadic mesocyclones were based on the knowledge
that a tornado had occurred for each of the cases. Thus,
the results presented herein should not be interpreted as a
means to anticipate tornado formation. Rather, the re-
sults should be used in tandem with environmental in-
formation (e.g., Smith et al. 2015) as an additional means
to anticipate the likely tornado intensity/damage, given
tornado formation.

Specifically, a radar-based diagnosis of a wide me-
socyclone appears to increase the likelihood of a higher
EF-rated tornado, particularly for tornadoes forming
within supercell thunderstorms. More specifically, a
pretornadic mesocyclone with a width greater than
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FI1G. 18. As in Fig. 17, but showing the linear relationship be-
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average pretornadic mesocyclone width (km).
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3km (less than 1km) appears more likely to generate
tornadoes rated EF3 and higher (EF1 and less). Based
on our analyses, the width characterization (i.e., of
“wide” versus ‘narrow”) should not change signifi-
cantly in time leading up to tornadogenesis, thus making
this characterization a relatively more reliable indicator
than mesocyclone intensity. Our analyses also show that
it should not be expected that a wide (narrow) meso-
cyclone will necessarily be a strong (weak) mesocyclone,
nor should it be expected that stronger pretornadic
mesocyclones will necessarily produce higher EF-rated
tornadoes. In addition, the width characterization
should not be greatly impacted by radar range, provided
that the mesocyclone is within 100 km from the radar.
Both findings are consistent across all convective modes.
On the other hand, the pretornadic mesocyclone width
does not appear to be operationally useful for antic-
ipating the potential for tornado damage-path width
or length. This finding is consistent across all modes,
but merits future study using well constrained dam-
age surveys.

5. Summary, conclusions, and future work

Operational radar data and tornado reports were
used herein to test the generality of the Trapp et al.
(2017) hypothesis that wide, intense tornadoes should
form more readily out of wide, rotating updrafts. A
new radar dataset was assembled that focuses explic-
itly on the pretornadic characteristics of the mesocy-
clone, which allowed for the elimination of the effects
of the tornado itself on the mesocyclone characteris-
tics. GR2Analyst was used to manually analyze 102
tornadic events during the period 27 April 2011-
1 May 2019. The corresponding tornadoes had dam-
age (EF) ratings ranging from EF0 to EF5, and all
were within 100km of a WSR-88D. Several linear
regression analyses were completed comparing char-
acteristics of the pretornadic mesocyclone to tornado
intensity. A key finding is that the linear regression
between the EF rating of the tornado and the mean,
pretornadic width of the mesocyclone for all cases
yields a coefficient of determination (R?) value of
0.75. This linear relationship is higher for DSC (su-
percell) cases (R* = 0.82), and lower for QLCS cases
(R* = 0.37). Overall, we have found that pretornadic
mesocyclone width tends to be a persistent, relatively
time-invariant characteristic that is a good predictor
of potential tornado intensity. In contrast, the pre-
tornadic mesocyclone intensity (differential velocity)
tends to exhibit considerable time variability, and thus
would offer less reliability in anticipating tornado
intensity.
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In our future work, the environmental characteristics of
each case will be analyzed and compared to pretornadic
mesocyclone characteristics. This will be done to better
understand the environmental controls on the pretornadic
mesocyclone width and intensity and any dependence of
the pretornadic mesocyclone on convective mode. There
will also be further analysis of the pretornadic mesocy-
clone, and its coevolution with updraft properties revealed
at cloud top through overshooting top area (Marion et al.
2019), to explore for the presence of any operationally
useful trends which would allude to a potential tornado
intensity or tornadogenesis. In addition, case simulations
using the Weather Research and Forecasting Model will
be used to further explore the relationship between the
pretornadic mesocyclone and tornado intensity and any
potential environmental controls.
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